Distributed query-aware quantization for high-dimensional similarity searches

نویسندگان

  • Gheorghi Guzun
  • Guadalupe Canahuate
چکیده

The concept of similarity is used as the basis for many data exploration and data mining tasks. Nearest Neighbor (NN) queries identify the most similar items, or in terms of distance the closest points to a query point. Similarity is traditionally characterized using a distance function between multi-dimensional feature vectors. However, when the data is high-dimensional, traditional distance functions fail to significantly distinguish between the closest and furthest points, as few dissimilar dimensions dominate the distance function. Localized similarity functions, i.e. functions that only consider dimensions close to the query, quantize each dimension independently and only compute similarity for the dimensions where the query and the points fall into the same bin. These quantizations are query-agnostic. There is potential to improve accuracy when a query-dependent quantization is used. In this paper we propose a Query dependent Equi-Depth (QED) on-the-fly quantization method to improve high-dimensional similarity searches. The quantization is done for each dimension at query time and localized scores are generated for the closest p fraction of the points while a constant penalty is applied for the rest of the points. QED not only improves the quality of the distance metric, but also improves query time performance by filtering out non relevant data. We propose a distributed indexing and query algorithm to efficiently compute QED. Our experimental results show improvements in classification accuracy as well as query performance up to one order of magnitude faster than Manhattanbased sequential scan NN queries over datasets with hundreds of dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foreseer: A Novel, Locality-Aware Peer-to-Peer System Architecture for Keyword Searches

Peer-to-peer (P2P) systems are becoming increasingly popular and complex, serving millions of users today. However, the design of current unstructured P2P systems does not take full advantage of rich locality properties present in P2P system workloads, thus possibly resulting in inefficient searches or poor system scalability. In this paper, we propose a novel locality-aware P2P system architec...

متن کامل

Prototyping a Vibrato-Aware Query-By-Humming (QBH) Music Information Retrieval System for Mobile Communication Devices: Case of Chromatic Harmonica

Background and Aim: The current research aims at prototyping query-by-humming music information retrieval systems for smart phones. Methods: This multi-method research follows simulation technique from mixed models of the operations research methodology, and the documentary research method, simultaneously. Two chromatic harmonica albums comprised the research population. To achieve the purpose ...

متن کامل

Locality Sensitive Indexing for Efficient High-Dimensional Query Answering in the Presence of Excluded Regions

Similarity search in high-dimensional spaces is popular for applications like image processing, time series, and genome data. In higher dimensions, the phenomenon of curse of dimensionality kills the effectiveness of most of the index structures, giving way to approximate methods like Locality Sensitive Hashing (LSH), to answer similarity searches. In addition to range searches and k-nearest ne...

متن کامل

Analysis of User query refinement behavior based on semantic features: user log analysis of Ganj database (IranDoc)

Background and Aim: Information systems cannot be well designed or developed without a clear understanding of needs of users, manner of their information seeking and evaluating. This research has been designed to analyze the Ganj (Iranian research institute of science and technology database) users’ query refinement behaviors via log analysis.    Methods: The method of this research is log anal...

متن کامل

Optimizing Vector-Quantization Processor Architecture for In- telligent Query-Search Applications

The architecture of a very large scale integration (VLSI) vector-quantization processor (VQP) has been optimized to develop a general-purpose intelligent query-search agent. The agent performs a similarity-based search in a large-volume database. Although similarity-based search processing is computationally very expensive, latency-free searches have become possible due to the highly parallel m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018